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FORMATION OF CRACKS ON COMPRESSING AN UNBOUNDED BRITTLE BODY 
WITH A CIRCULAR OPENING* 

A.N. GALYBIN 

A simplified model of a brittle body /l/ is used as a basis for investi- 
gating the appearance of cracks originating at the boundary of a circular 
cavity in a body in a state of plane deformation caused by uniaxial 
compression at infinity. The singular integral equation of the problem 
is reduced to an integral Fredholm equation with a degenerate kernel. 
The solution is obtained in the form of a Fourier series in terms of 
Legendre polynomials. 

1. Formulation of the problem. Basic relationships. Let the body occupy the 
outside of a unit circle whose centre coincides with the origin of coordinates Ory and is in 
a state of plane deformation caused by the stresses at infinity sIa= --p @>O). cya = Tag== 0. 
The elastic stresses are given by the Kolosov functions /2/ 

a+)=-+(1 -+j, y.(:)=g(,_~++$:i 

Here I = I+ ,y, / z I> 1. The tensile stresses are largest on the opening contour at the 
points I = ~1 and are equal to cy (kl.O)=p. Maximum compressive stresses are attained at the 
points z = ri, cI (0. ~1) = -3~. The ratioof the compressive to the tensile strength x is much 

greater than unity for a number of brittle materials. It 
was found e.g. in /3, 4/ that for rocks X-10z, and for 
glass and ceramics X- 10. We shall assume that Y.>3 
for the body in question. Then for p> aO(oO is the magnitude 
of the resistance to fracture), two fracture cracks 
symmetrically distributed about the Or axis form within 
the body (see the figure). 

Accordingtothe simplifiedmodelofabrittlebody/l/ the 
crack surfaces pull towards each other due to the stresses 
cc,. provided that the distance 6 separating them does not 
exceed the value of the material constant 6, (incipient 
cracks or the zone of weakened bonds), when d>b,, the 
crack surfaces do not interact with each other (developed 
cracks). We denote by L the length of the incipient crack. 
Assuming that the elastic displacements ~~(z.01 undergo a 

jump g (z) = uy+ (I, 0) - uy- (I,@) on the segment of the real axis I< 1x1 <l;L and using well-known 
relations /5/, we can write the s'n~" Ai ,,iar integral equation for determining the displacement 
jump density 

where G is shear modiilus and v is Poisson's ratio. 
Approximate methods were used earlier /5, 6/ to solve equations with analogous kernels. 

The method used below reduces the singular integral Eq.Cl.1) to an integral Fredholm equation 
with a degenerate kernel whose solution in the class of bounded functions is sought in the 
form of a Fourier series in Legendre polynomials. 

2. Solution of the integral equation. We divide (1.1) by o0 and pass to the 
equation on the segment lo.11 using the linear transformation t= m+l,r= et-!-l. Having 
separated explicitly the terms of the kernel containing the singularities, we write (CJ = PI@ 
is the dimensionless stress at infinity) 
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The function F(T,~) is bounded for 0 $z,E<l; therefore it can be represented, with 
prescribed accuracy, by a segment of a Fourier series in displaced Lenendre polynomials 

F CT, t) = x Q.,R, VI n, C! 

where the coefficients L():~ are given by the double integral 

a$;[ = (Zk$ I)(21 + 1)s [F (7,:) R, (7) R, (5)drdf 
0; 

Putting 

we reduce (2.1) to the form 

(2 .1) 

where f(i) is the right side of the Eq.(i.;j. 
Applying the Mellin transform to (2. 3) we obtain a functional Wiener-Hopf equation in the 

strip -i<Res<O 

cb- (SJ = E; (~1 G (s) [Q (I)% + 9) + @' (s)] (2.4’ 

1 m 

CD- (8) = \ )I” (1) 2 di, 

ir 
a,- (i.) = j zu (T, 0) ts dr 

1 

h'(+=c~r-$-. G;,,=-& I11,‘1_ ; 

Q ($j = 1 + Zlf'(i) - (C -_ 1'1 r_gf(>. i)ii. 
1, , i 

(Zf1 (35 Bt ‘it Z! is the hypergeonetric Ga':ss function;. 
Using the results cf ,'-I i:. which a fx;nctional equation analogous te (2.4) was obtained 

for the case F(7.:!=0, we write the following expressisns for the unknown functions a+ (5) : 

:r ($1 is the gamma function, and C is a straight line lying in the strip -_<<es<O), The plus 

and minus indices mean tha t the function is analytic and has no zeros in the region FkS<O 

and Rer>-i, respectively, The following relations hold in the strip -l<<e~<O: 

x I>) -= 2K+ (')K_ (S)!S, G (F) = G' (s) G-(c) 

Applying the theorem of residues to (2.5)‘ we obtain 

L (‘,l = 
I$- (‘,) SlIl “Sj 

A- (F]; 
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where S, are roots of the equation A(s)= 0 lying in the right half-plane and I, is the residue 
of the function l/A(s) at the point g=Sj. In deriving expressions (2.6) we used the condition 

that the stresses are bounded at the tip of the incipient crack (or a condition equivalent to 
H0 (i) = 0) which, according to the Abel-type theorem /0/ has the form 

x ’ Csj) Q Csj) 

j 
l+sj =O 

Using the inverse Mellin transform 

( po (Z) = 2ni G-(s) f ’ 5 -‘-I dsj 
c 

we obtain 
.’ (“2) L ("j) ICZ (“,) - Q Cr,)l 

Si + Sj 

(Ts,_l 

- 1) 
i.j 

K (L,) = 
Sifi sin 3 

8A- (),)G- (- >,; (1 --sI) 

(2.7) 

(2.8) 

Expression (2.9) represents an integral Fredholm equation with degenerate kernel, since 
Q(s) contains ok given by the integral (2.2). We shall seek its solution in the form of a 
Fourier series in displaced Legendre polynomials, taking into account the expansion 

+-1 - 1=~((Ik+l)z,;R,;(r). c$=dl(r-l,k) 
h' 

We obtain the following system of linear equations for Q : 

m = 0.1.. ., IF ( E 
ZJm 

= .V(S1)/ ,~,,.lf ,.,- l.“i) (‘,_E,) 

It is convenient to assume that the length L of the incipient crack is known. Then, adding 

condition (2.7) to (2.9) we obtain an algebraic system of ri - 2 linear equations for determining 
Ck, 0 (k = 0, 1.. . I!) 

The figure shows the dependence of the length and development of the crack on the load 8. 
When L-l, finite increments in o are matched by small changes in L. In the case of a 

real material we have a solution when x3>0. This condition can be made sharper if we include 
the stresses caused at the contcur of the opening by the incipient cracks. Using expression 
(2.14! or /5/, we obtain 

For example, for L = 1 we have ( o1 (0. =I)/ < 3.1(1-E, i.e. the contribution of these stresses 
is not significant. 

The development of the crack is governed by the formula 

and reaches its maximum on the contc-r cf the openin; (I = 1). The dependence of g (i)=aDc,-lg (1). 
lC'3 on o is shown in the figure. Tine relation F (1: = 6. deterrr.ines the critical load 0, under 
which the crack begins to develop. 

1. 
2. 

3. 
4. 
5. 

6. 

7. 
8. 

Thus the solution obtained hoids fcr 0 <z 3,o < 0,. 

The author thanks V.K. Vostrcv and R.L. Salganik fcr discussing the paper. 

REFERENCES 

LEONOV M.YA., Elements of the theory of bittle fracture. PMTF, 3, 1961. 
MUSKHELISHVILI N.I., CertainFundamental Problems of theMathematicalTheoryof Elasticity. 
Moscow, Nauka, 1966. 

POL' B., Criteria of plastic flow and brittle fracture. In book:Fracture. 2,Moscow,Mir,1975. 
PAVLOV P.A., Mechanical States and Strength of Materials. Leningrad. Izd-vo LGU, 1980. 
VITVITSKII P.M. and LEONOV M.YA., Extension beyond the yield point of a plate with a circular 
opening. PMTF, 1, 1962. 

PANASYUK V.V., VITVITSKII P.M. and KUTEN' S.I., Elastoplastic equilibrium in a plate with 
a circular opening and cracks emerging at the contour. Fiz. khim. mekhan. mater. 1, 1976. 

KULIEV V.D., On plastic deformation at the tip of an edge crack. PMM 43, 1, 1979. 
NOBLE B., Methods Based on the Wiener-Hopf Technique for Solving Partial Differential 
Equations. Pergamon Press Ltd. 1959. 

Translated by L.K. 


